Hybrid High-Order methods for variable diffusion problems on general meshes
نویسندگان
چکیده
We extend the Hybrid High-Order method introduced by the authors for the Poisson problem to problems with heterogeneous/anisotropic diffusion. The cornerstone is a local discrete gradient reconstruction from elementand face-based polynomial degrees of freedom. Optimal error estimates are proved. Résumé Méthodes hybrides d’ordre élevé pour des problèmes à diffusion variable sur des maillages généraux. Nous étendons la méthode hybride d’ordre élevé conçue par les auteurs pour le problème de Poisson à des problèmes de diffusion hétérogène/anisotrope. La pierre angulaire est une reconstruction locale du gradient discret à partir des degrés de liberté polynomiaux sur les éléments et les faces. On établit des estimations d’erreur optimales.
منابع مشابه
An hp-Hybrid High-Order Method for Variable Diffusion on General Meshes
In this work, we introduce and analyze a hp-Hybrid High-Order method for a variable diffusion problem. The proposed method is valid in arbitrary space dimension and for fairly general polytopal meshes. Variable approximation degrees are also supported. We formulate hp-convergence estimates for both the energyand L2-norms of the error, which are the first results of this kind for Hybrid High-Ord...
متن کاملAn arbitrary order scheme on generic meshes for miscible displacements in porous media
We design, analyse and implement an arbitrary order scheme applicable to generic meshes for a coupled elliptic-parabolic PDE system describing miscible displacement in porous media. The discretisation is based on several adaptations of the Hybrid-High-Order (HHO) method due to Di Pietro et al. [Computational Methods in Applied Mathematics, 14(4), (2014)]. The equation governing the pressure is ...
متن کاملDiscretisation of heterogeneous and anisotropic diffusion problems on general non-conforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces
A discretisation scheme for heterogeneous anisotropic diffusion problems on general meshes is developed and studied. The unknowns of this scheme are the values at the centre of the control volumes and at some internal interfaces which may for instance be chosen at the diffusion tensor discontinuities. The scheme is therefore completely cell centred if no edge unknown is kept. It is shown to be ...
متن کاملThe mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes
We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on...
متن کاملA new discretization methodology for diffusion problems on generalized polyhedral meshes
We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure) variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically impor...
متن کامل